These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The caa3 terminal oxidase of Bacillus stearothermophilus. Transient spectroscopy of electron transfer and ligand binding.
    Author: Giuffrè A, D'Itri E, Giannini S, Brunori M, Ubbink-Kok T, Konings WN, Antonini G.
    Journal: J Biol Chem; 1996 Jun 14; 271(24):13987-92. PubMed ID: 8662862.
    Abstract:
    The thermophilic bacterium Bacillus stearothermophilus possesses a caa3-type terminal oxidase, which was previously purified (De Vrij, W., Heyne, R. I. R., and Konings, W. N. (1989) Eur. J. Biochem. 178, 763-770). We have carried out extensive kinetic experiments on the purified enzyme by stopped-flow time-resolved optical spectroscopy combined with singular value decomposition analysis. The results indicate a striking similarity of behavior between this enzyme and the electrostatic complex between mammalian cytochrome c and cytochrome c oxidase. CO binding to fully reduced caa3 occurs with a second order rate constant (k = 7.8 x 10(4)M-1 s-1) and an activation energy (E* = 6.1 kcal mol-1) similar to those reported for beef heart cytochrome c oxidase. Dithionite reduces cytochrome a with bimolecular kinetics, while cytochrome a3 (and CuB) is reduced via intramolecular electron transfer. When the fully reduced enzyme is mixed with O2, cytochrome a3, and cytochrome c are rapidly oxidized, whereas cytochrome a remains largely reduced in the first few milliseconds. When cyanide-bound caa3 is mixed with ascorbate plus TMPD, cytochrome c and cytochrome a are synchronously reduced; the value of the second order rate constant (k = 3 x 10(5) M-1 s-1 at 30 degrees C) suggests that cytochrome c is the electron entry site. Steady-state experiments indicate that cytochrome a has a redox potential higher than cytochrome c. The data from the reaction with O2 reveal a remarkable similarity in the kinetic, equilibrium, and optical properties of caa3 and the electrostatic complex cytochrome c/cytochrome c oxidase.
    [Abstract] [Full Text] [Related] [New Search]