These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase.
    Author: Gagnon Y, Lacoste L, Champagne N, Lapointe J.
    Journal: J Biol Chem; 1996 Jun 21; 271(25):14856-63. PubMed ID: 8662929.
    Abstract:
    The expression of the Rhizobium meliloti glutamyl-tRNA synthetase gene in Escherichia coli under the control of a trc promoter results in a toxic effect upon isopropyl-beta-D-thiogalactopyranoside induction, which is probably caused by a misacylation activity. To further investigate this unexpected result, we looked at the pathway of Gln-tRNAGln formation in R. meliloti. No glutaminyl-tRNA synthetase activity has been found in R. meliloti crude extract, but we detected a specific aminotransferase activity that changes Glu-tRNAGln to Gln-tRNAGln. Our results show that R. meliloti, a member of the alpha-subdivision of the purple bacteria, is the first Gram-negative bacteria reported to use a transamidation pathway for Gln-tRNAGln synthesis. A phylogenetic analysis of the contemporary glutamyl-tRNA synthetase and glutaminyl-tRNA synthetase amino acid sequences reveals that a close evolutionary relationship exists between R. meliloti and yeast mitochondrial glutamyl-tRNA synthetases, which is consistent with an origin of mitochondria in the alpha-subdivision of Gram-negative purple bacteria. A 256-amino acid open reading frame closely related to bacterial glutamyl-tRNA synthetases, which probably originates from a glutamyl-tRNA synthetase gene duplication, was found in the 4-min region of the E. coli chromosome. We suggest that this open reading frame is a relic of an ancient transamidation pathway that occurred in an E. coli ancestor before the horizontal transfer of a eukaryotic glutaminyl-tRNA synthetase (Lamour, V., Quevillon, S., Diriong, S., N'Guyen, V. C., Lipinski, M., and Mirande, M.(1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8670-8674) and that it favored its stable acquisition. From these observations, a revisited model for the evolution of the contemporary glutamyl-tRNA synthetases and glutaminyl-tRNA synthetases that differs from the generally accepted model for the evolution of aminoacyl-tRNA synthetases is proposed.
    [Abstract] [Full Text] [Related] [New Search]