These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The ATP-binding site in the 2-kinase domain of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the role of Lys-54 and Thr-55 by site-directed mutagenesis.
    Author: Vertommen D, Bertrand L, Sontag B, Di Pietro A, Louckx MP, Vidal H, Hue L, Rider MH.
    Journal: J Biol Chem; 1996 Jul 26; 271(30):17875-80. PubMed ID: 8663445.
    Abstract:
    All known 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozymes contain a sequence (GX4GK(S/T)) in the 6-phosphofructo-2-kinase domain corresponding to the so-called nucleotide binding fold signature or Walker A motif. Mutagenesis and crystal structure data from several nucleotide binding proteins, which also contain this sequence, showed the importance of the lysine and serine/threonine residues in nucleotide binding. We have studied the role of Lys-54 and Thr-55 in MgATP binding in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by site-directed mutagenesis. Lys-54 was mutated to methionine, whereas Thr-55 was mutated to valine, serine, and cysteine. Three mutants, Lys-54 to Met and Thr-55 to Cys or Val, displayed more than a 5000-fold decrease in 6-phosphofructo-2-kinase activity compared with the wild type. The mutations had no effect on fructose-2, 6-bisphosphatase activity and did not affect the activation of fructose-2,6-bisphosphatase after phosphorylation by cyclic 3', 5'-AMP-dependent protein kinase. Binding experiments with ATP, ADP, and their analogs (3'-N-methylanthraniloyl derivatives) showed that these two residues do not play the same role. Lys-54 is involved in ATP binding, whereas Thr-55 is important for catalysis.
    [Abstract] [Full Text] [Related] [New Search]