These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. Author: Pete MJ, Exton JH. Journal: J Biol Chem; 1996 Jul 26; 271(30):18114-21. PubMed ID: 8663471. Abstract: A high activity lysophospholipase A (lysoPLA) was purified from the soluble fraction of bovine brain. The separation included sequential DEAE-Sephacel, phenyl-Sepharose FF, heparin-Sepharose CL-6B, and Q-Sepharose FF column chromatography. Mono Q, Sephacryl S300HR, and hydroxylapatite column chromatography in the presence of the detergent CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate) and glycerol further purified the activity to 17,000-fold. The enzyme was purified to homogeneity by polyacrylamide gel electrophoresis using nondenaturing conditions. The pure enzyme migrated as a single polypeptide of 95 kDa mass by SDS-polyacrylamide gel electrophoresis and deacylated arachidonoyl-lysophosphatidylcholine (ara-lysoPC) at rate of 70 micromol/(min mg). The enzyme showed selectivity for arachidonoyl-substituted lysoPC, since palmitoyl-lysoPC was deacylated at a much lower rate (7 micromol/(min mg)). LysoPLA activity was maximal at pH 7.4-8.0 and was increased 1.3-fold by MgCl2 (5 mM). By including MgCl2, however, the range of optimal activity was expanded to pH values up to 9.0. The 95-kDa protein also deacylated arachidonoyl groups from 1-O-hexadecyl-2-arachidonoyl-PC (PLA2 activity) at a rate of 15 micromol/(min mg). Moreover, the deacylation of arachidonoyl groups from diacylPC was greatly increased by including purified bovine brain PLA1 in the reaction mixture. Thus, the same 95-kDa polypeptide catalyzed both lysoPLA and PLA2 activities, but the rate of arachidonoyl group deacylation was increased by prior sn-1 deacylation. Finally, the 95-kDa polypeptide cross-reacted with antibodies raised against a human recombinant cPLA2, implying that the 95-kDa protein is structurally similar to cPLA2. Additionally, these data suggest that the combined actions of PLA1 and the 95-kDa protein generate significant amounts of free arachidonic acid in the brain.[Abstract] [Full Text] [Related] [New Search]