These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Probing the cytochrome c peroxidase-cytochrome c electron transfer reaction using site specific cross-linking. Author: Pappa HS, Tajbaksh S, Saunders AJ, Pielak GJ, Poulos TL. Journal: Biochemistry; 1996 Apr 16; 35(15):4837-45. PubMed ID: 8664274. Abstract: Engineered cysteine residues in yeast cytochrome c peroxidase (CCP) and yeast iso-1-cytochrome c have been used to generate site specifically cross-linked peroxidase-cytochrome c complexes for the purpose of probing interaction domains and the intramolecular electron transfer reaction. Complex 2 was designed earlier [Pappa, H.S., & Poulos, T.L. (1995) Biochemistry 34, 6573-6580] to mimic the known crystal structure of the peroxidase-cytochrome c noncovalent complex [Pelletier, H., & Kraut, J. (1992) Science 258, 1748-1755]. Complex 3 was designed such that cytochrome c is tethered to a region of the peroxidase near Asp148 which has been suggested to be a second site of interaction between the peroxidase and cytochrome c. Using stopped flow methods, the rate at which the ferrocytochrome c covalently attached to the peroxidase transfers an electron to peroxidase compound I is estimated to be approximately 0.5-1 s-1 in complex 3 and approximately 800 s-1 in complex 2. In both complexes the Trp191 radical and not the Fe4+=O oxyferryl center of compound I is reduced. Conversion of Trp191 to Phe slows electron transfer about 10(3) in complex 2. Steady state kinetic measurements show that complex 3 behaves like the wild type enzyme when either horse heart or yeast ferrocytochrome c is used as an exogenous substrate, indicating that the region blocked in complex 3 is not a functionally important interaction site. In contrast, complex 2 is inactive toward horse heart ferrocytochrome c at all ionic strengths tested and yeast ferrocytochrome c at high ionic strengths. Only at low ionic strengths and low concentrations of yeast ferrocytochrome c does complex 2 give wild type enzyme activity. This observation indicates that in complex 2 the primary site of interaction of CCP with horse heart and yeast ferrocytochrome c at high ionic strengths is blocked. The relevance of these results to the pathway versus distance models of electron transfer and to the interaction domains between peroxidase and cytochrome c is discussed.[Abstract] [Full Text] [Related] [New Search]