These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of a physiological insulin concentration on the endothelin-sensitive Ca2+ store in porcine coronary artery smooth muscle.
    Author: Dick GM, Sturek M.
    Journal: Diabetes; 1996 Jul; 45(7):876-80. PubMed ID: 8666136.
    Abstract:
    The effect of insulin to attenuate the Ca2+ and contractile response of vascular smooth muscle to a number of agonists has been described previously, but the Ca2+ regulatory mechanisms of insulin action remain unclear. We determined the effect of a physiological insulin concentration (300 pmol/l) on the Ca2+ response of vascular smooth muscle cells of the porcine right coronary artery to endothelin 1 (ET-1); furthermore, we examined the cellular Ca2+ stores affected by insulin (i.e., Ca2+ stores releasable by inositol 1,4,5-trisphosphate, caffeine, and ionomycin). We measured the Ca2+ responses of acutely isolated single smooth muscle cells with the fluorescent Ca2+ indicator Fura-2. Acute insulin exposure (20 min) significantly attenuated the Ca2+ response of single smooth muscle cells to 10 nmol/l ET-1. This inhibitory effect of insulin was observed both in the presence and absence of extracellular Ca2+. In contrast with the effects on ET-1-induced Ca2+ responses, insulin did not inhibit the Ca2+ response to 5 mmol/l caffeine, an agent that directly releases sarcoplasmic reticulum Ca2+ stores. Insulin was also without effect on the total cellular Ca2+ store released by 1 micromol/l ionomycin, a Ca2+-transporting ionophore. When ET-1 and caffeine were given in succession, a sizable caffeine-sensitive Ca2+ store could be released from insulin-treated cells but not control cells, indicating that the sarcoplasmic reticulum Ca2+ store of insulin-treated cells was not depleted by ET-1. Generalized depletion of the sarcoplasmic reticulum Ca2+ store is not one of the cellular mechanisms involved in the effect of insulin on coronary smooth muscle; instead, the effect may be due to an inhibitory influence on transmembrane signal transduction, such as diminished ET-1-induced inositol 1,4,5-trisphosphate production or reduced ability of this phosphoinositol to release stored Ca2+.
    [Abstract] [Full Text] [Related] [New Search]