These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis.
    Author: Elborough KM, Winz R, Deka RK, Markham JE, White AJ, Rawsthorne S, Slabas AR.
    Journal: Biochem J; 1996 Apr 01; 315 ( Pt 1)(Pt 1):103-12. PubMed ID: 8670092.
    Abstract:
    In the oilseed rape Brassica napus there are two forms of acetyl-CoA carboxylase (ACCase). As in other dicotyledonous plants there is a type I ACCase, the single polypeptide 220 kDa form, and a type II multi-subunit complex analogous to that of Escherichia coli and Anabaena. This paper describes the cloning and characterization of a plant biotin carboxyl carrier protein (BCCP) from the type II ACCase complex that shows 61% identity/79% similarity with Anabaena BCCP at the amino acid level. Six classes of nuclear encoded oilseed rape BCCP cDNA were clones, two of which contained the entire coding region. The BCCP sequences allowed the assignment of function to two previously unassigned Arabidopsis expressed sequence tag (EST) sequences. We also report the cloning of a second type II ACCase component from oilseed rape, the beta-carboxyltransferase subunit (betaCT), which is chloroplast-encoded. Northern analysis showed that although the relative levels of BCCP and betaCT mRNA differed between different oilseed rape tissues, their temporal patterns of expression were identical during embryo development. At the protein level, expression of BCCP during embryo development was studied by Western blotting, using affinity-purified anti-biotin polyclonal sera. With this technique a 35 kDa protein thought to be BCCP was shown to reside within the chloroplast. This analysis also permitted us to view the differential expression of several unidentified biotinylated proteins during embryogenesis.
    [Abstract] [Full Text] [Related] [New Search]