These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-D-mannosidase. Author: Grard T, Herman V, Saint-Pol A, Kmiecik D, Labiau O, Mir AM, Alonso C, Verbert A, Cacan R, Michalski JC. Journal: Biochem J; 1996 Jun 15; 316 ( Pt 3)(Pt 3):787-92. PubMed ID: 8670153. Abstract: We have previously reported the substrate specificity of the cytosolic alpha-D-mannosidase purified from rat liver using Man9GlcNAc, i.e. Man alpha 1-2Man alpha 1-3(Man alpha 1-2Man alpha 1-6)Man alpha 1-6(Man alpha 1-2Man alpha 1-2Man alpha 1-3) Man beta 1-4G1cNAc, as substrate [Grard, Saint-Pol, Haeuw, Alonso, Wieruszeski, Strecker and Michalski (1994) Eur. J. Biochem. 223, 99-106]. Man9 G1cNAc is hydrolysed giving Man5GlcNAc, i.e. Man alpha 1-2 Man alpha 1-2Man alpha 1-3(Man alpha 1-6)Man beta 1-4GlcNAc, possessing the same structure as the oligosaccharide of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. We study here the activity of the purified cytosolic alpha-D-mannosidase towards the oligosaccharide-diphosphodolichol intermediates formed during the biosynthesis of N-glycans, and also towards soluble oligosaccharides released from the endoplasmic reticulum which are glucosylated or not and possessing at their reducing end either a single N-acetylglucosamine residue or a di-N-acetylchitobiose sequence. We demonstrate that (1) dolichol pyrophosphate oligosaccharide substrates are poorly hydrolysed by the cytosolic alpha-D-mannosidase; (2) oligosaccharides with a terminal reducing di-N-acetylchitobiose sequence are not hydrolysed at all; (3) soluble oligosaccharides bearing a single reducing N-acetylglucosamine are the real substrates for the enzyme. These results suggest a role for alpha-D-mannosidase in the catabolism of glycans released from the endoplasmic reticulum rather than in the regulation of the biosynthesis of asparagine-linked oligosaccharides.[Abstract] [Full Text] [Related] [New Search]