These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalytic activity of poly(ADP-ribose) polymerase is necessary for repair of N-methylpurines in nontranscribed, but not in transcribed, nuclear DNA sequences.
    Author: Ray LS, Chatterjee S, Berger NA, Grishko VI, LeDoux SP, Wilson GL.
    Journal: Mutat Res; 1996 Jun 12; 363(2):105-14. PubMed ID: 8676924.
    Abstract:
    The role of poly(ADP-ribose) polymerase (PADPRP) in nuclear DNA repair and other nuclear processes has been intensely studied and debated for decades. Recent studies have begun to shed new light on these arguments with firm experimental data for its role, primarily, as a remodeler of chromatin structure. Those studies imply that PADPRP plays an indirect role in DNA repair, serving to expose DNA to repair enzymes through chromatin remodeling. Only DNA that is tightly packaged would require PADPRP activity for its repair; while DNA in an open conformation would be accessible to DNA repair enzymes and not require PADPRP activity. The purpose of the current studies was to address the above hypothesis directly. Using quantitative Southern blot analysis, we studied repair in transcribed and nontranscribed nuclear DNA sequences in ADPRT 351 cells 95% deficient in PADPRP activity. Cells were exposed to methylnitrosourea (MNU) for 1 h and allowed to repair for 8 or 24 h. Densitometric scans of autoradiographs revealed that, when compared to their parental V79 cell line, ADPRT 351 cells 95% deficient in PADPRP activity were equally as efficient in repair of N-methylpurines in the transcribed sequence containing the dihydrofolate reductase gene. However, the ADPRT 351 cells were deficient in the ability to repair these lesions in the nontranscribed sequence containing the IgE gene compared to repair of the same sequence in the parental V79 cells. Nucleoid sedimentation assays demonstrated that the ADPRT 351 cells are deficient in repair across the entire genome when compared to the parental V79 cells. These studies indicate that PADPRP activity is not required for repair of N-methylpurines in transcribed nuclear DNA sequences but is necessary for the repair of these lesions in nontranscribed nuclear DNA sequences as well as across the entire genome since the DNA in a given cell is predominantly nontranscribed.
    [Abstract] [Full Text] [Related] [New Search]