These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of metabotropic glutamate receptor-stimulated phosphoinositide hydrolysis in rat cultured cerebellar granule cells.
    Author: Toms NJ, Jane DE, Tse HW, Roberts PJ.
    Journal: Br J Pharmacol; 1995 Dec; 116(7):2824-7. PubMed ID: 8680712.
    Abstract:
    1. The pharmacology of excitatory amino acid (EAA)-stimulated phosphoinositide (PI) hydrolysis, monitored via [3H]-inositol monophosphate accumulation, was investigated in primary cultures of rat cerebellar granule cells. 2. EAA-stimulated PI hydrolysis peaked after 4-5 days in vitro and subsequently declined. 3. The agonist order of potency was found to be (EC50): L-quisqualic acid (Quis) (2 microM) >> L-glutamate (50 microM) > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD) (102 microM). L-Glutamate (Emax = 873% of basal activity) elicited the largest stimulation of PI hydrolysis, whereas Quis (Emax = 603%) and (1S,3R)-ACPD (Emax = 306%) produced somewhat lower stimulations. 4. Several phenylglycine derivatives were found to be active in inhibiting 2 microM Quis-stimulated PI hydrolysis, in order of potency (IC50): (S)-4-carboxy-3-hydroxyphenylglycine (41 microM) > or = (S)-4-carboxyphenylglycine (51 microM) >> (+)-alpha-methyl-4-carboxyphenylglycine (243 microM). 5. Cultured cerebellar granule cells of the rat appear to have Group I mGluR pharmacology similar to that reported for cloned mGluR1 and provide an ideal system for investigating novel mGluR1 ligands in a native environment.
    [Abstract] [Full Text] [Related] [New Search]