These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sublethal levels of oxidative stress stimulate transcriptional activation of c-jun and suppress IL-2 promoter activation in Jurkat T cells.
    Author: Beiqing L, Chen M, Whisler RL.
    Journal: J Immunol; 1996 Jul 01; 157(1):160-9. PubMed ID: 8683110.
    Abstract:
    Sublethal levels of oxidative stress are well known to alter T cell functional responses, but the underlying mechanisms are unknown. The current study examined the effects of oxidative stress on transcriptional activities mediated by c-Fos/c-Jun AP-1 and the nuclear factor of activated T cells (NF-AT). The present results show that Jurkat T cells acutely exposed to micromolar concentrations of H2O2 exhibit substantial increases in AP-1 binding activity and the expression of c-jun but not c-fos mRNA. The preferential induction of c-jun by H2O2 did not represent redox stabilization of mRNA transcripts, and oxidative signals closely resembled PHA/PMA stimulation by effectively transactivating the full length c-jun promoter via the proximal jun1 tumor promoter-responsive element (TRE)-like promoter element. Similarly, the complexes binding the consensus AP-1 TRE and jun TRE-like motifs in cells exposed to oxidative signals or PHA/PMA were indistinguishable, being composed of c-Fos, c-Jun, and JunD. However, PHA/PMA but not oxidative signals induced the coordinate activation of reporter constructs containing the AP-1-TRE, NF-AT, and IL-2 promoter regions along with IL-2 mRNA expression. Furthermore, sublethal levels of H2O2 actively suppressed the transcriptional activation of NF-AT and IL-2 reporters as well as the expression of IL-2 mRNA in cells stimulated with PHA/PMA. Gel shift analysis revealed that oxidative suppression of NF-AT represented inhibition in the early generation of NFAT complexes rather than the binding of preformed NF-AT complexes. These results suggest that oxidative signals can positively and negatively regulate T cell transcriptional events and that changes in cellular redox can uncouple AP-1 regulation of c-jun from transcriptional up-regulation of IL-2 via NF-AT.
    [Abstract] [Full Text] [Related] [New Search]