These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of taurine transport in human glioma GL15 cell line: regulation by protein kinase C. Author: Tchoumkeu-Nzouessa GC, Rebel G. Journal: Neuropharmacology; 1996 Jan; 35(1):37-44. PubMed ID: 8684595. Abstract: Data describing characteristics of taurine transport system in human brain cells are not currently available. We have used GL15 cells, a cell line of human brain origin that keeps some properties of normal glial cells, to investigate these characteristics. The human glioma cell line GL15 was found to take up taurine. The uptake was strictly sodium-dependent. Replacement of NaCl with choline chloride almost totally abolished the uptake. There was also an anion requirement for the uptake system, and Cl- was the most potent among several monovalent anions tested. The uptake process was specific for beta-amino acids such as taurine, hypotaurine and beta-alanine. The kinetics of uptake were studied. Apparently, a single transport system with a K(m) of 8.95 +/- 0.26 microM was responsible for the uptake. A maximal velocity of 1.32 +/- 0.03 nmol/mg of protein/10 min was found. Stoichiometric analysis revealed that two Na+ and one Cl- ions were involved in the translocation of one taurine molecule. Phorbol 12-myristate 13-acetate (PMA), a potent stimulator of protein kinase C (PKC), inhibited taurine uptake. Maximal inhibition was obtained at 50 nM after 1 hr of treatment. This effect was prevented by pretreatment of the cells with chelerythrine, a potent and selective inhibitor of PKC. The transport of beta-alanine was inhibited to a comparative extent. The mechanism of this inhibition was not investigated, but it was found that this inhibitory effect was not prevented by cycloheximide, actinomycin D, colchicine or cytochalasin D, indicating that neither protein synthesis, nor microfilament function were involved. The effect of PMA was associated with an impairment of kinetic constants. It is concluded that human GL15 cells have a taurine transporter similar to that expressed in rodent glial cells, and that the activation of PKC can modulate the activity of this transporter.[Abstract] [Full Text] [Related] [New Search]