These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H] CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Author: Cunha RA, Johansson B, Constantino MD, Sebastião AM, Fredholm BB. Journal: Naunyn Schmiedebergs Arch Pharmacol; 1996 Feb; 353(3):261-71. PubMed ID: 8692280. Abstract: The binding of the adenosine A2A receptor selective agonist 2-[4-(2-p-carboxyethyl)phenylamino] -5'-N-ethylcarboxamidoadenosine (CGS 21680) to the rat hippocampal and cerebral cortical membranes was studied and compared with that to striatal membranes. [3H] CGS 21680, in the concentration range tested (0.2-200 nM), bound to a single site with a Kd of 58 nM and a Bmax of 353 fmol/mg protein in the hippocampus, and with a Kd of 58 nM and a Bmax of 264 fmol/mg protein in the cortex; in the striatum, the single high-affinity [3H] CGS 21680 binding site had a Kd of 17 nM and a Bmax of 419 fmol/mg protein. Both guanylylimidodiphosphate (100 microM) and Na+ (100 mM) reduced the affinity of [3H] CGS 21680 binding in the striatum by half and virtually abolished [3H] CGS 21680 binding in the hippocampus and cortex. The displacement curves of [3H] CGS 21680 binding with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), N6-cyclohexyladenosine (CHA), 5'-N-ethylcarboxamidoadenosine (NECA) and 2-chloroadenosine (CADO) were biphasic in the hippocampus and cortex as well as in the striatum. The predominant [3H]CGS 21680 binding site in the striatum (80%) had a pharmacological profile compatible with A2A receptors and was also present in the hippocampus and cortex, representing 10-25% of [3H]CGS 21680 binding. The predominant [3H]CGS 21680 binding site in the hippocampus and cortex had a pharmacological profile distinct from A2A receptors: the relative potency order of adenosine antagonists DPCPX, 1,3-dipropyl- 8-¿4-[(2-aminoethyl)amino]carbonylmethyl- oxyphenyl¿ xanthine (XAC), 8-(3-chlorostyryl)caffeine (CSC), and (E)-1,3-dipropyl-8-(3,4-dimethoxystyryl)- methylxanthine (KF 17,837) as displacers of [3H] CGS 21680 (5 nM) binding in the hippocampus and cerebral cortex was DPCPX > XAC >> CSC approximately KF 17,837, and the relative potency order of adenosine agonists CHA, NECA, CADO, 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5'-N- ethylcarboxamidoadenosine (APEC), and 2-phenylaminoadenosine (CV 1808) was CHA approximately NECA > or = CADO > APEC approximately CV1808 > CGS 21680. In the presence of DPCPX (20 nM), [3H] CGS 21680 (0.2-200 nM) bound to a site (A2A-like) with a Kd of 20 nM and a Bmax of 56fmol/mg protein in the hippocampus and with a Kd of 22 nM and a Bmax of 63fmol/mg protein in the cortex. In the presence of CSC (200 nM), [3H]CGS 21680(0.2-200 nM) bound to a second high-affinity site with a Kd of 97 nM and a Bmax of 255 fmol/mg protein in the hippocampus and with a Kd of 112 nM and a Bmax of 221 fmol/mg protein in the cortex. Two pharmacologically distinct [3H]CGS 21680 binding sites were found in synaptosomal membranes of the hippocampus and cortex and in the striatum, one corresponding to A2A receptors and the other to the second high-affinity [3H]CGS 21680 binding site. In contrast, the pharmacology of [3H]CHA binding was similar in synaptosomal membranes of the three brain areas. The present results establish the existence of at least two high-affinity [3H]CGS 21680 binding sites in the CNS and demonstrate that the [3H]CGS 21680 binding site predominant in the hippocampus and cerebral cortex has different binding characteristics from the classic A2A adenosine receptor, which predominates in the striatum.[Abstract] [Full Text] [Related] [New Search]