These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Requirements for cytochrome b5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes.
    Author: Yamazaki H, Nakano M, Gillam EM, Bell LC, Guengerich FP, Shimada T.
    Journal: Biochem Pharmacol; 1996 Jul 26; 52(2):301-9. PubMed ID: 8694855.
    Abstract:
    NADH-dependent 7-ethoxycoumarin O-deethylation activities could be reconstituted in systems containing cytochrome b5 (b5), NADH-b5 reductase, and bacterial recombinant P450 2E1 in 100 mM potassium phosphate buffer (pH 7.4) containing a synthetic phospholipid mixture and cholate. Replacement of NADH-b5 reductase with NADPH-P450 reductase yielded a 4-fold increase in 7-ethoxycoumarin O-deethylation activity, and further stimulation (approximately 1.5-fold) could be obtained when NADPH was used as an electron donor. Removal of b5 from the NADH- and NADPH-supported systems caused a 90% loss of 7-ethoxycoumarin O-deethylation activities in the presence of NADPH-P450 reductase, but resulted in complete loss of the activities in the absence of NADPH-P450 reductase. Km values were increased and Vmax values were decreased for 7-ethoxycoumarin O-deethylation when b5 was omitted from the NADPH-supported P450 2E1-reconstituted systems. Requirements for b5 in P450 2E1 systems were also observed in chlorzoxazone 6-hydroxylation, aniline p-hydroxylation, and N-nitrosodimethylamine N-demethylation. In human liver microsomes, NADH-dependent 7-ethoxycoumarin O-deethylation, chlorzoxazone 6-hydroxylation, aniline p-hydroxylation, and N-nitrosodimethylamine N-demethylation activities were found to be about 55, 41, 33, and 50%, respectively, of those catalyzed by NADPH-supported systems. Anti-rat NADPH-P450 reductase immunoglobulin G inhibited 7-ethoxycoumarin O-deethylation activity catalyzed by human liver microsomes more strongly in NADPH- than NADH-supported reactions, while anti-human b5 immunoglobulin G inhibited microsomal activities in both NADH- and NADPH-supported systems to similar extents. These results suggest that b5 is an essential component in P450 2E1-catalyzed oxidations of several substrates used, that about 10% of the activities occur via P450 2E1 reduction by NADPH-P450 reductase in the absence of b5, and that the NADH-supported system contributes, in part, to some reactions catalyzed by P450 2E1 in human liver microsomes.
    [Abstract] [Full Text] [Related] [New Search]