These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The oxysterols cholest-5-ene-3 beta,4 alpha-diol, cholest-5-ene-3 beta,4 beta-diol and cholestane-3 beta,5 alpha,6 alpha-triol are formed during in vitro oxidation of low density lipoprotein, and are present in human atherosclerotic plaques.
    Author: Breuer O, Dzeletovic S, Lund E, Diczfalusy U.
    Journal: Biochim Biophys Acta; 1996 Jul 26; 1302(2):145-52. PubMed ID: 8695664.
    Abstract:
    Isolated human low density lipoprotein (LDL) was oxidized with either cupric ions or soybean lipoxygenase and linoleic acid. Cholesterol oxidation products (oxysterols) were determined by isotope dilution gas chromatography-mass spectrometry. A new cholestane-3,5,6-triol isomer, cholestane-3 beta,5 alpha,6 alpha-triol, which has not previously been recognized as a cholesterol autoxidation product, was found at similar concentrations as the well-known cytotoxic cholestane-3 beta,5 alpha,6 beta-triol during both copper- and lipoxygenase-mediated LDL oxidation. Furthermore, two epimeric cholest-5-ene-3 beta,4-diols were identified in the oxidized LDL at similar concentrations. These two isomers were also identified in human atherosclerotic tissue in a ratio of 1:1 at a concentration more than 10-times higher than in non-atherosclerotic vessels. In vitro oxidation of LDL under an 18O2 atmosphere revealed that molecular oxygen was the only source of the oxygen functions at C-4 in the cholest-5-ene-3 beta,4-diols. Taken together, these findings suggest that the cholest-5-ene-3 beta,4-diols in atherosclerotic plaques are formed by autoxidation.
    [Abstract] [Full Text] [Related] [New Search]