These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel natriuretic peptide receptor/guanylyl cyclase A-selective agonist inhibits angiotensin II- and forskolin-evoked aldosterone synthesis in a human zona glomerulosa cell line.
    Author: Olson LJ, Lowe DG, Drewett JG.
    Journal: Mol Pharmacol; 1996 Aug; 50(2):430-5. PubMed ID: 8700153.
    Abstract:
    We report the production of a novel human natriuretic peptide receptor/guanylyl cyclase A (hNPR-A)-selective agonist ANP [G9T, R11S, G16R] (sANP). This agonist has similar affinity to ANP for hNPR-A and 1,000-10,000-fold reduced affinity for the human natriuretic peptide clearance receptor (hNPR-C). sANP was used to directly test the hypothesis that hNPR-A mediates the inhibitory effect of natriuretic peptides on aldosterone generation in a human zona glomerulosa cell line, H295R. Human type A natriuretic peptide and sANP (10(-11) to 10(-6) M) resulted in concentration-dependent increases in cGMP levels and decreases in forskolin (100 nM)- and angiotensin II (5 nM)-induced aldosterone and pregnenolone production. These results revealed an inhibitory effect of both peptides on the agonist-stimulated conversion of cholesterol to pregnenolone (i.e., cytochrome P-450 cholesterol monooxygenase side-chain cleaving enzyme, EC 1.14.15.6). H295R cells also exhibited angiotensin II- and forskolin-evoked conversion of [3H]cortico-sterone to [3H]aldosterone (i.e., cytochrome P-450 steroid 11 beta-monooxygenase/aldosterone synthase, EC 1.14.15.4). Human type A natriuretic peptide and sANP (10(-7) M) inhibited the angiotensin II-stimulated late pathway but did not affect forskolin-facilitated conversion of corticosterone to aldosterone. Our results directly demonstrate inhibitory effects of hNPR-A-mediated signal transduction on cytochrome P-450 cholesterol monooxygenase side-chain cleaving enzyme and steroid 11 beta-monooxygenase/aldosterone synthase complex depending on the steroidogenic agonist used.
    [Abstract] [Full Text] [Related] [New Search]