These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Steroid hormonal regulation of calcium-binding protein regucalcin mRNA expression in the kidney cortex of rats. Author: Kurota H, Yamaguchi M. Journal: Mol Cell Biochem; 1996 Feb 23; 155(2):105-11. PubMed ID: 8700155. Abstract: The effect of various steroid hormones on the expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using rat liver regucalcin complementary DNA (0.9 kb of open-reading frame). Regucalcin mRNA was expressed in the kidney cortex but not the medulla. Rats received a single subcutaneous administration of steroid; the animals were sacrificed 60 min after the treatment of aldosterone (2.5, 5.0 and 10 micrograms/100 g body weight) or 6 h after the treatment of estrogen (17 beta-estradiol; 0.05, 0.1 and 0.2 mg/100 g), hydrocortisone (0.5, 1.0 and 3.0 mg/100 g) and dexamethasone (50, 100 and 150 micrograms/100 g). Regucalcin mRNA levels in the kidney cortex were clearly diminished by the administration of aldosterone or estrogen, while hydrocortisone administration had no effect. The administration of dexamethasone (100 micrograms/100 g) caused a remarkable increase of regucalcin mRNA levels in the kidney cortex. The dexamethasone-induced increase in regucalcin mRNA levels was completely blocked by the simultaneous administration of cycloheximide (150 micrograms/100 g), although the drug administration had no effect on the mRNA levels in control rats. Meanwhile, the dexamethasone administration did not cause an appreciable alteration of calcium content in the kidney cortex. The present study demonstrates that, of the various steroid hormones used, dexamethasone uniquely has a stimulatory effect on regucalcin mRNA expression in the kidney cortex of rats. The steroid effect may be mediated through a newly synthesized protein.[Abstract] [Full Text] [Related] [New Search]