These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Platelet endothelial cell adhesion molecule-1 (PECAM-1) homophilic adhesion is mediated by immunoglobulin-like domains 1 and 2 and depends on the cytoplasmic domain and the level of surface expression.
    Author: Sun J, Williams J, Yan HC, Amin KM, Albelda SM, DeLisser HM.
    Journal: J Biol Chem; 1996 Aug 02; 271(31):18561-70. PubMed ID: 8702505.
    Abstract:
    PECAM-1/CD31 is vascular cell adhesion and signaling molecule of the Ig superfamily that plays a role in neutrophil recruitment at inflammatory sites and may be involved the release of leukocytes from the bone marrow and in cardiovascular development. The interactions of PECAM-1 with its ligands are complex in that it is able to bind both with itself (homophilic adhesion) or with non-PECAM-1 ligands (heterophilic adhesion). Although the factors that regulate ligand binding are not fully understood, these interactions are regulated in part by its large cytoplasmic domain, a region of 118 amino acids encoded by 8 exons of its gene (exons 9-16). The purpose of this work was to better define the mechanisms of PECAM-1-dependent homophilic adhesion by analyzing the binding interactions of L-cells expressing full-length and selectively mutated forms of human, murine, and human/murine chimeric PECAM-1 molecules in an established aggregation assay. These studies demonstrate that 1) the minimal length of the cytoplasmic domain required for cellular aggregation is represented within the sequences encoded by exons 9 and 10, 2) removal or addition of the sequences encoded by exon 14 from the cytoplasmic domain can determine whether the mechanism of aggregation is a heterophilic calcium-dependent process or a homophilic calcium-independent process, 3) high levels of surface expression of PECAM-1 on the cell surface change the mechanism of aggregation from heterophilic to homophilic, and 4) PECAM-1-dependent homophilic binding appears to involve the direct interaction of only the first two extracellular Ig-like domains. These data suggest that PECAM-1-ligand interactions can be regulated through multiple pathways including alterations of the cytoplasmic domain and the level of surface expression.
    [Abstract] [Full Text] [Related] [New Search]