These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. Author: Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P. Journal: J Biol Chem; 1996 Sep 06; 271(36):22117-24. PubMed ID: 8703022. Abstract: Interaction of rat kinesin and Drosophila nonclaret disjunctional motor domains with tubulin was studied by a blot overlay assay. Either plus-end or minus-end-directed motor domain binds at the same extent to both alpha- and beta-tubulin subunits, suggesting that kinesin binding is an intrinsic property of each tubulin subunit and that motor directionality cannot be related to a preferential interaction with a given tubulin subunit. Binding features of dimeric versus monomeric rat kinesin heads suggest that dimerization could drive conformational changes to enhance binding to tubulin. Competition experiments have indicated that kinesin interacts with tubulin at a Tau-independent binding site. Complementary experiments have shown that kinesin does not interact with the same efficiency with the different tubulin isoforms. Masking the polyglutamyl chains with a specific monoclonal antibody leads to a complete inhibition of kinesin binding. These results are consistent with a model in which polyglutamylation of tubulin regulates kinesin binding through progressive conformational changes of the whole carboxyl-terminal domain of tubulin as a function of the polyglutamyl chain length, thus modulating the affinity of tubulin for kinesin and Tau as well. These results indicate that microtubules, through tubulin polymorphism, do have the ability to control microtubule-associated protein binding.[Abstract] [Full Text] [Related] [New Search]