These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pyrrolobenzothiazepinones and pyrrolobenzoxazepinones: novel and specific non-nucleoside HIV-1 reverse transcriptase inhibitors with antiviral activity. Author: Campiani G, Nacci V, Fiorini I, De Filippis MP, Garofalo A, Greco G, Novellino E, Altamura S, Di Renzo L. Journal: J Med Chem; 1996 Jul 05; 39(14):2672-80. PubMed ID: 8709096. Abstract: Two novel classes of pyrrolobenzothiazepinones and pyrrolobenzoxazepinones were investigated as potential anti-AIDS drugs. These compounds were found to inhibit HIV-1 reverse transcriptase (RT) enzyme in vitro and to prevent HIV-1 cytopathogenicity in T4 lymphocytes, without appreciable activity on HIV-2 cytopathic effects, and against HBV as well as calfthymus DNA alpha-polymerase. Their potency is influenced by substituents at position 6 and on the fused aromatic ring. Specifically, small lipophilic substituents at C-6 were preferred, whereas substitutions on the benzo-fused ring were found to be detrimental to activity, with respect to the unsubstituted compounds. Modification of the pie-system at C-6 is well tolerated, although the replacement of the benzo-fused with a [2,3]naphtho-fused ring leads to a less active compound. Maximum potency and specificity is achieved with a phenyl and an ethyl group at position 6 of the pyrrolobenzoxazepinone system. In the enzymatic assay the oxazepinone derivative (+/-)-6-ethyl-6-phenylpyrrolo[2,1-d][1,5] benzoxazepin-7(6H)-one 16e (IC50 = 0.25 microM) was found to be more potent than nevirapine (IC50 = 0.5 microM), tested in the same experimental conditions using rC.dG as a template-primer. In cell culture assay benzoxazepine 16e was active against HIV-1, both wild type and AZT-sensitive, and HIV-1 (IIIB) strains, but not against HIV-2. In enzyme assay although 16e inhibited HIV-1 RT, it was inactive against the nevirapine-resistant recombinant RT Y181C at 50 microM. Molecular modeling studies suggest that these derivatives present a 3D pharmacophoric arrangement similar to that of other non-nucleoside inhibitors such as nevirapine.[Abstract] [Full Text] [Related] [New Search]