These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimulation of human cheek cell Na+/H+ antiporter activity by saliva and salivary electrolytes: amplification by nigericin.
    Author: Patten GS, Leifert WR, Burnard SL, Head RJ, McMurchie EJ.
    Journal: Mol Cell Biochem; 1996 Jan 26; 154(2):133-41. PubMed ID: 8717427.
    Abstract:
    Proton-dependent, ethylisopropylamiloride (EIPA)-sensitive Na+ uptake (Na+/H+ antiporter) studies were performed to examine if saliva, and ionophores which alter cellular electrolyte balance, could influence the activity of the cheek cell Na+/H+ antiporter. Using the standard conditions of 1 mmol/l Na+, and a 65:1 (inside:outside) proton gradient in the assay, the uniport ionophores valinomycin (K+) and gramicidin (Na+) increased EIPA-sensitive Na+ uptake by 177% (p < 0.01) and 227% (p < 0.01), respectively. The dual antiporter ionophore nigericin (K(+)-H+) increased EIPA-sensitive Na+ uptake by 654% (p < 0.01), with maximal Na+ uptake achieved by 1 min and at an ionophore concentration of 50 mumol/l, with an EC50 value 6.4 mumol/l. Pre-incubation of cheek cells with saliva or the low molecular weight (MW) components of saliva (saliva activating factors, SAF) for 2 h at 37 degrees C, also significantly stimulated EIPA-sensitive Na+ uptake. This stimulation could be mimicked by pre-incubation with 25 mmol/l KCl or K(+)-phosphate buffer. Pre-incubating cheek cells with SAF and the inclusion of 20 mumol/l nigericin in the assay, produced maximum EIPA-sensitive Na+ uptake. After pre-incubation with water, 25 mmol/l K(+)-phosphate or SAF, with nigericin in all assays, the initial rate of proton-gradient dependent, EIPA-sensitive Na+ uptake was saturable with respect to external Na+, with Km values of 0.9, 1.7, and 1.8 mmol/l, and Vmax values of 13.4, 25.8, and 31.1 nmol/mg protein/30 sec, respectively. With 20 mumol/l nigericin in the assay, Na+ uptake was inhibited by either increasing the [K+]o in the assay, with an ID50 of 3 mmol/l. These results indicate that nigericin can facilitate K+i exchange for H+o and the attending re-acidification of the cheek cell amplifies 22Na+ uptake via the Na+/H+ antiporter. The degree of stimulation of proton-dependent, EIPA-sensitive Na+ uptake is therefore dependent, in part, on the intracellular [K+]i.
    [Abstract] [Full Text] [Related] [New Search]