These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Potentiation and inhibition of subtypes of neuronal nicotinic acetylcholine receptors by Pb2+. Author: Zwart R, Van Kleef RG, Milikan JM, Oortgiesen M, Vijverberg HP. Journal: Eur J Pharmacol; 1995 Nov 30; 291(3):399-406. PubMed ID: 8719426. Abstract: Effects of inorganic lead (Pb2+) on defined subtypes of neuronal nicotinic acetylcholine receptors have been investigated. Voltage clamp experiments have been performed on Xenopus oocytes expressing alpha 3 beta 2, alpha 3 beta 4 and alpha 4 beta 2 neuronal nicotinic acetylcholine receptor subunit combinations. In oocytes expressing the alpha 3 beta 2 subunit combination Pb2+ enhances the peak amplitude of nicotinic acetylcholine receptor-mediated inward currents evoked by superfusion with 100 microM acetylcholine. At concentrations of 1-250 microM, Pb2+ potentiates alpha 3 beta 2 receptor-mediated inward current concentration dependently by a factor of 1.1-11.0. Inward currents evoked by low (3 microM) and high (1 mM) concentrations of acetylcholine are potentiated to a similar extent. Conversely, in oocytes expressing the alpha 3 beta 4 subunit combination Pb2+ inhibits the nicotinic receptor-mediated inward currents evoked with 100 microM acetylcholine. Inhibitory effects are observed in the concentration range of 1 nM-100 microM Pb2+ but the degree of inhibition varies between oocytes. A similar inhibition of the alpha 4 beta 2 nicotinic receptor-mediated inward current by Pb2+ indicates that alpha as well as beta subunits are involved in the potentiating and inhibitory effects. Possible reasons for the variation in the inhibitory effects of Pb2+ on alpha 3 beta 4 and alpha 4 beta 2 nicotinic receptor-mediated inward currents have been investigated and are discussed. The divalent cations Ca2+ and Mg2+ potentiate both alpha 3 beta 2 and alpha 3 beta 4 nicotinic receptor-mediated inward currents. The distinct modulation of receptor function by Pb2+ and by Ca2+ and Mg2+ and the dependence of the modulatory effect of Pb2+ on subunit composition suggest that Pb2+ interacts with multiple sites on the alpha and beta subunits of neuronal nicotinic acetylcholine receptors.[Abstract] [Full Text] [Related] [New Search]