These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Author: Markussen J, Havelund S, Kurtzhals P, Andersen AS, Halstrøm J, Hasselager E, Larsen UD, Ribel U, Schäffer L, Vad K, Jonassen I. Journal: Diabetologia; 1996 Mar; 39(3):281-8. PubMed ID: 8721773. Abstract: We have synthesized insulins acylated by fatty acids in the epsilon-amino group of LysB29. Soluble preparations can be made in the usual concentration of 600 nmol/ml (100 IU/ml) at neutral pH. The time for 50% disappearance after subcutaneous injection of the corresponding TyrA14(125I)-labelled insulins in pigs correlated with the affinity for binding to albumin (r = 0.97), suggesting that the mechanism of prolonged disappearance is binding to albumin in subcutis. Most protracted was LysB29-tetradecanoyl des-(B30) insulin. The time for 50% disappearance was 14.3 +/- 2.2 h, significantly longer than that of Neutral Protamine Hagedorn (NPH) insulin, 10.5 +/- 4.3 h (p < 0.001), and with less inter-pig variation (p < 0.001). Intravenous bolus injections of LysB29-tetradecanoyl des-(B30) human insulin showed a protracted blood glucose lowering effect compared to that of human insulin. The relative affinity of LysB29-tetradecanoyl des-(B30) insulin to the insulin receptor is 46%. In a 24-h glucose clamp study in pigs the total glucose consumptions for LysB29-tetradecanoyl des-(B30) insulin and NPH were not significantly different (p = 0.88), whereas the times when 50% of the total glucose had been infused were significantly different, 7.9 +/- 1.0 h and 6.2 +/- 1.3 h, respectively (p < 0.04). The glucose disposal curve caused by LysB29-tetradecanoyl des-(B30) insulin was more steady than that caused by NPH, without the pronounced peak at 3 h. Unlike the crystalline insulins, the soluble LysB29-tetradecanoyl des-(B30) insulin does not elicit invasion of macrophages at the site of injection. Thus, LysB29-tetradecanoyl des-(B30) insulin might be suitable for providing basal insulin in the treatment of diabetes mellitus.[Abstract] [Full Text] [Related] [New Search]