These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Trophic effect of cholera toxin B subunit in cultured cerebellar granule neurons: modulation of intracellular calcium by GM1 ganglioside.
    Author: Wu G, Lu ZH, Nakamura K, Spray DC, Ledeen RW.
    Journal: J Neurosci Res; 1996 May 01; 44(3):243-54. PubMed ID: 8723763.
    Abstract:
    Survival of cerebellar granule cells (CGC) in culture was significantly improved in the presence of cholera toxin B subunit (Ctx B), a ligand which binds to GM1 with specificity and high affinity. This trophic effect was linked to elevation of intracellular calcium ([Ca2+]i), and was additive to that of high K+. Survival was optimized when Ctx B was present for several days during the early culture period. 45Ca2+ and cell survival studies indicated the mechanism to involve enhanced influx of Ca2+ through L-type voltage-sensitive channels, since the trophic effect was blocked by antagonists specific for that channel type. Inhibitors of N-methyl-D-aspartate receptor/channels were without effect. During the early stage of culture Ctx B, together with 25 mM K+, caused [Ca2+]i to rise to 0.2-0.7 microM in a higher proportion of cells than 25 mM K+ alone. A significant change in the nature of GM1 modulation of Ca2+ flux occurred after 7 days in culture, at which time Ctx B ceased to elevate and instead reduced [Ca2+]i below the level attained with 25 mM K+. GM1 thus appears to serve as intrinsic inhibitor of one or more L-type Ca2+ channels during the first 7 days in vitro, and then as intrinsic activator of (possibly other) L-type channels after that period. This is the first demonstration of a modulatory role for GM1 ganglioside affecting Ca2+ homeostasis in cultured neurons of the CNS.
    [Abstract] [Full Text] [Related] [New Search]