These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tachykinins cause inward current through NK1 receptors in bullfrog sensory neurons. Author: Akasu T, Ishimatsu M, Yamada K. Journal: Brain Res; 1996 Mar 25; 713(1-2):160-7. PubMed ID: 8724987. Abstract: The effects of tachykinins on primary afferent neurons of bullfrog dorsal root ganglia (DRG) were examined by using whole-cell patch-clamp methods. Neurokinin A (NKA) caused inward current (INKA) in a concentration-dependent manner. Concentration-response curve showed that the EC50 for NKA was 6 nM. The INKA showed strong tachyphylaxis, when NKA was continuously applied for more than 1 min. Substance P (SP) also produced inward current with potency similar to that of NKA. Neurokinin B (NKB) was less effective in producing the inward current. The order of agonist potency was NKA = SP >> NKB. Spantide ([D-Arg1, D-Trp7.9, Leu11]SP), a non-selective peptide antagonist at tachykinin receptors, reduced the tachykinin-induced current. CP-99,994, a selective non-peptide antagonist for neurokinin-1 (NK1) receptor, inhibited the inward currents produced by NKA and SP. The INKA was associated with decrease in K+ conductance. NKA suppressed both a voltage-dependent K+ current, the M-current (IM), and a voltage-independent background K+ current, IK(B). Intracellular dialysis with GTP gamma S (100 nM) or GDP beta S (100 microM) depressed the INKA. Pre-treatment of DRG neurons with pertussis toxin (PTX) did not prevent the INKA. Depletion of intracellular ATP depressed the INKA. These results suggest that the tachykinin-induced inward current is mediated through the NK1 receptor which mainly couples to PTX-insensitive G-protein in bullfrog primary afferent neurons.[Abstract] [Full Text] [Related] [New Search]