These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica. Author: Hurwitz I, Susswein AJ. Journal: J Neurophysiol; 1996 Apr; 75(4):1327-44. PubMed ID: 8727381. Abstract: 1. Buccal motor programs in Aplysia are characterized by two phases of activity, which represent protraction and retraction of the radula in intact animals. The shift from protraction to retraction is caused by synaptic activity inhibiting neurons that are active during protraction and exciting neurons that are active during retraction. 2. B64, a newly identified neuron present bilaterally in the buccal ganglia, is partially responsible for the phase shift. Stimulating a single B64 causes bilateral inhibition of neurons B31/B32 and other neurons active during protraction and cause bilateral excitation of neurons B4/B5 and other neurons active during retraction. B64 is active throughout retraction. The amplitude and waveforms of the synaptic potentials caused by firing B64 are similar, but not identical, to those seen during retraction. 3. Some of the effects of B64 on B31/B32 and on B4/B5 are monosynaptic, as shown by their maintained presence in high divalent cation seawater, which blocks polysynaptic activity. 4. A brief depolarization of B64 leads to a long-lasting depolarization and firing. The ability of B64 to respond in this way is at least partially caused by an endogenous plateau potential, as this property is still seen after synaptic transmission is blocked. 5. Hyperpolarization of B64 bilaterally and preventing the somata from firing unmasks a large excitatory postsynaptic potential in B64. This procedure does not block the shift from protraction to retraction, indicating that spiking in the B64 somata is not necessary for the phase shift. 6. The firing pattern and synaptic connections of B64 are consistent with the hypothesis that the neuron is part of a central pattern generator underlying buccal motor programs. B64 is monosynaptically inhibited by neurons that are active along with B31/B32, which are responsible for producing the protraction phase of a buccal motor program. During the later portion of the protraction phase B64 is excited. In addition, firing B64 can phase advance and phase delay buccal motor programs. 7. Regulating the firing of B64 can regulate the expression of buccal motor programs. Stimulation of B64 at frequencies of 0.5-1.0 Hz leads to complete inhibition of buccal motor programs, whereas steady-state depolarization of B64 can lead to repetitive bursts of activity.[Abstract] [Full Text] [Related] [New Search]