These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimulation of the activities of hepatic fatty acid oxidation enzymes by dietary fat rich in alpha-linolenic acid in rats.
    Author: Ide T, Murata M, Sugano M.
    Journal: J Lipid Res; 1996 Mar; 37(3):448-63. PubMed ID: 8728310.
    Abstract:
    The activities of hepatic fatty acid oxidation enzymes in rats fed perilla oil rich in alpha-linolenic acid (alpha-18:3) were compared with those fed saturated fats or safflower oil (the mixture of safflower oil and olive oil, 94:8, w/w) containing the same amount of polyunsaturated fatty acids with perilla oil exclusively as linoleic acid (18:2). When the rats were fed the diets containing 15% coconut, safflower, and perilla oils for 1 week, the rate of mitochondrial and peroxisomal oxidation of palmitoyl-CoA (16:0-CoA) in the liver homogenates was the highest in rats fed perilla oil. Among the rats fed the diets containing 15% palm, safflower, and perilla oils for 2 weeks, the rates of mitochondrial and peroxisomal oxidations of 16:0-, 18:2-, and alpha-18:3-CoAs were the highest in rats fed perilla oil, and the rate of oxidation of alpha-18:3-CoA by both pathways was higher than those of other acyl-CoAs in all groups. Dietary perilla oil relative to palm and safflower oils significantly increased the activities of carnitine palmitoyltransferase, acyl-CoA dehydrogenase, acyl-CoA oxidase, and 2,4-dienoyl-CoA reductase. The substrate specificity of carnitine palmitoyltransferase appeared to be responsible for differential rates of the mitochondrial oxidation of acyl-CoAs. The substrate specificity of acyl-CoA oxidase did not account for the preferential peroxisomal oxidation of alpha-18:3 relative to 18:2. The preferential mitochondrial and peroxisomal beta-oxidation of alpha-18:3-CoA relative to 16:0- and 18:2-CoAs was also confirmed in rats fed laboratory chow irrespective of the substrate/albumin ratios in the assay mixture. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed a diet rich in alpha-18:3.
    [Abstract] [Full Text] [Related] [New Search]