These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of titanium on transcriptional and post-transcriptional regulation of fibronectin in human fibroblasts. Author: Chou L, Firth JD, Nathanson D, Uitto VJ, Brunette DM. Journal: J Biomed Mater Res; 1996 Jun; 31(2):209-17. PubMed ID: 8731209. Abstract: The effects of commercially pure titanium (Ti) on the regulation of fibronectin gene expression and synthesis were investigated in early-passage human gingival fibroblasts. The fibroblasts were cultured on 50 nm Ti-coated silicon wafers treated with radio-frequency glow discharge prior to use and on Falcon tissue culture plastic (TCP) dishes as a control. Northern hybridization analysis revealed that fibroblasts cultured on Ti reduced the fibronectin mRNA level by 58% at 16 h, but increased it by 2.6-fold at 90 h, although the cell numbers and house-keeping gene GAPD mRNA levels on these two surfaces were essentially the same. The amount of total RNA was slightly less on the Ti surface. While the total [35S]methionine incorporation was essentially unaltered, the amount of [35S]methionine-labeled fibronectin was significantly increased in cells cultured on a Ti surface in early cultures but decreased in the late cultures. The apparent discrepancy between the increased fibronectin mRNA levels and decreased translation could be explained by a 30% reduction in fibronectin mRNA half life in cells cultured on Ti. The distribution of fibronectin between the medium and the cell layer also was altered on Ti surfaces, with a approximately 100-fold increase of fibronectin assembled in extracellular matrix at 16 h, but a 36% reduction at 90 h. In contrast, the amount of fibronectin recovered in the medium was essentially unchanged. The total amount of protein assembled into the extracellular matrix by cells on Ti increased 2.1-fold at 16 h but decreased by 19% in 90-h cultures. These significant changes in fibronectin gene activity and gene product distribution by cells cultured on Ti surfaces demonstrate that the surface chemistry of biomaterials can selectively regulate the cellular behavior at the molecular level and, conversely, that molecular biological techniques provide sensitive indicators of the molecular biocompatibility of implant materials.[Abstract] [Full Text] [Related] [New Search]