These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neoplastic transformation by quartz in the BALB/3T3/A31-1-1 cell line and the effects of associated minerals.
    Author: Saffiotti U, Ahmed N.
    Journal: Teratog Carcinog Mutagen; ; 15(6):339-56. PubMed ID: 8732883.
    Abstract:
    Quartz, the most common form of crystalline silica, was tested quantitatively for neoplastic transformation in the mouse embryo cell line, BALB/3T3/A31-1-1. Five quartz dust samples of respirable size [Min-U-Sil 5 (MQZ); hydrofluoric-acid-etched MQZ (HFMQZ); Chinese standard quartz (CSQZ); DQ12; and F600] all induced significant levels of neoplastic transformation, showing dose-dependent increases in the frequency of morphologically transformed foci at lower tested doses and a plateau level of response at higher doses. The plateau levels reached by the five tested samples did not differ substantially (maximum transformation frequencies per 10(5) cells ranging from 53.2 for MQZ to 28.3 for HFMQZ). F600 had minimal cytotoxicity but transforming activity comparable to the other samples. Cells from all tested transformed foci, when injected s.c. in nude mice, grew as sarcomas. Cytogenetic analysis showed that all tested silica-transformed cell lines had acquired one to five additional marker chromosomes, of types not seen in untreated control lines, indicative of induced chromosomal translocations and amplification. Increased expression of one or more of five genes (p53, myc, H-ras, K-ras, and abl) was observed in several quartz-transformed cell lines. No transforming activity was found for hematite and anatase (both nontoxic), and for rutile (more toxic than MQZ). Combined exposure (1:1 w/w per unit culture area) of each of these dusts with MQZ showed that hematite and anatase inhibited MQZ toxicity as well as transformation, whereas rutile markedly enhanced MQZ toxicity but not MQZ-induced transformation.
    [Abstract] [Full Text] [Related] [New Search]