These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Progressive cortical synchronization of ponto-geniculo-occipital potentials during rapid eye movement sleep.
    Author: Amzica F, Steriade M.
    Journal: Neuroscience; 1996 May; 72(2):309-14. PubMed ID: 8737401.
    Abstract:
    Phasic events, termed ponto-geniculo-occipital potentials, appear in the brainstem, thalamus and cerebral cortex during rapid eye movement sleep. In the cat, the species of choice for ponto-geniculo-occipital studies, these field potentials are usually recorded from the lateral geniculate thalamic nucleus and visual cortex. However, the fact that brainstem cholinergic neurons play a crucial role in the transfer of ponto-geniculo-occipital potentials to the thalamus, coupled with the evidence that mesopontine tegmental neurons project to virtually all thalamic nuclei, together explain why ponto-geniculo-occipital potentials are recorded over widespread territories, beyond the visual thalamocortical system. Here we demonstrate, by means of multi-site unit and field potential recordings from sensory, motor and association cortical areas in behaving cats, that: (i) ponto-geniculo-occipital potentials appear synchronously over the neocortex; and (ii) that their cortical synchronization develops progressively from the period preceding rapid eye movement sleep by 30-90 s (pre-rapid eye movement), to reach the highest degree of intracortical coherence during later epochs of rapid eye movement sleep. We propose that the widespread coherence of cortical ponto-geniculo-occipital potentials underlies the synchronization of fast oscillations (30-40 Hz) during rapid eye movement sleep over many, functionally distinct cortical territories implicated in dreaming, as brainstem-induced ponto-geniculo-occipital-like potentials are consistently followed by such fast oscillations.
    [Abstract] [Full Text] [Related] [New Search]