These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spermidine/spermine N1-acetyltransferase mRNA levels show marked and region-specific changes in the early phase after transient forebrain ischemia.
    Author: Zoli M, Pedrazzi P, Zini I, Agnati LF.
    Journal: Brain Res Mol Brain Res; 1996 May; 38(1):122-34. PubMed ID: 8737675.
    Abstract:
    Considerable evidence points to an involvement of natural polyamines (putrescine, spermidine and spermine) in trophic regulation of brain tissue. Spermidine/spermine N1-acetyltransferase is the key enzyme in the interconversion pathway which leads to the formation of spermidine and putrescine from spermine and spermidine, respectively. In the present paper we have studied using in situ hybridization histochemistry the levels of spermidine/spermine N1-acetyltransferase mRNA in the rat central nervous system after transient forebrain ischemia. In the first hours after the insult, a modest increase in spermidine/spermine N1-acetyltransferase mRNA levels was observed in ependymal cells and other non-neuronal cells of all telencephalic and diencephalic regions. In addition, major increases in spermidine/spermine N1-acetyltransferase mRNA levels were observed in regions selectively vulnerable to the ischemic insult, such as striatum, hippocampus and cerebral cortex, during the first day post-reperfusion. The time course and extent of labelling increase were subregion- and cell-specific. At the cellular level, the labelling appeared markedly increased in neurons (8-10 fold in ventromedial striatum and CA1 region) and, to a lesser extent, in non-neuronal cells. The increase in SSAT mRNA levels was not directly related to cell degeneration, as it was detected in both some vulnerable and some resistant cell populations. However, the peak increase of SSAT labelling was precocious in resistant neurons (such as those of ventromedial striatum and dentate gyrus granular layer) and delayed or very limited in vulnerable neurons (such as those of CA1 pyramidal layer and dorsolateral striatum). The increase in spermidine/spermine N1-acetyltransferase may contribute to the increase in putrescine and decrease in spermidine levels observed after ischemia and gives further support to the notion that polyamine metabolism in the early phase after lesion is oriented towards putrescine production. This phenomenon could be relevant in determining the prevalence of neurotrophic vs. neurotoxic effects of polyamines.
    [Abstract] [Full Text] [Related] [New Search]