These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The endogenous benzodiazepine receptor ligand ODN increases cytosolic calcium in cultured rat astrocytes.
    Author: Lamacz M, Tonon MC, Smih-Rouet F, Patte C, Gasque P, Fontaine M, Vaudry H.
    Journal: Brain Res Mol Brain Res; 1996 Apr; 37(1-2):290-6. PubMed ID: 8738163.
    Abstract:
    We have investigated the production of diazepam-binding inhibitor (DBI)-related peptides by astrocytes in primary culture and we have determined the effect of the octadecaneuropeptide DBI[33-50] (ODN) on the intracellular calcium concentration ([Ca2+]i) in astrocytes. Immunocytochemical labeling with antibodies against ODN showed that cultured astrocytes retain their ability to synthesize DBI in vitro. Cultured astrocytes were also found to release substantial amounts of ODN-immunoreactive material, and a brief exposure of astrocytes to a depolarizing potassium concentration resulted in a 5-fold increase in the rate of release of the ODN-like peptide. Microfluorimetric measurement of [Ca2+]i with the fluorescent probe indo-1 showed that nanomolar concentrations of ODN induced a marked increase in [Ca2+]i. The stimulatory effect of ODN on [Ca2+]i was not affected by calcium channel blockers or by incubation in Ca(2+)-free medium. In contrast, thapsigargin, an inhibitor of microsomal Ca(2+)-ATPase activity, totally abolished the ODN-induced increase in [Ca2+]i. Repeated pulses of ODN caused attenuation of the response, indicating the existence of a desensitization phenomenon. Preincubation of astrocytes with pertussis toxin totally blocked the effect of ODN on [Ca2+]i. The present study indicates that ODN-related peptides are synthesized and released by glial cells. Our results also show that synthetic ODN induces calcium mobilization from an intracellular store through stimulation of pertussis toxin-sensitive G protein. Taken together, these data suggest that endozepines act as paracrine and/or autocrine factors controlling the activity of astroglial cells.
    [Abstract] [Full Text] [Related] [New Search]