These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Brain tissue pO2 in relation to cerebral perfusion pressure, TCD findings and TCD-CO2-reactivity after severe head injury. Author: Dings J, Meixensberger J, Amschler J, Hamelbeck B, Roosen K. Journal: Acta Neurochir (Wien); 1996; 138(4):425-34. PubMed ID: 8738393. Abstract: As a reliable continuous monitoring of cerebral blood flow and/or cerebral oxygen metabolism is necessary to prevent secondary ischaemic events after severe head injury (SHI) the authors introduced brain tissue pO2 (ptiO2) monitoring and compared this new parameter with TCD-findings, cerebral perfusion pressure (CPP) and CO2-reactivity over time on 17 patients with a SHI. PtiO2 reflects the balance between the oxygen offered by the cerebral blood flow and the oxygen consumption by the brain tissue. According to TCD-CO2-reactivity PtiO2-CO2-reactivity was introduced. After initially (day 0) low mean values (ptiO2 7.7 +/- 2.6 mmHg, TCD 60.5 +/- 32.0 cm/sec and CPP 64.5 +/- 16.0 mmHg/, ptiO2 increased together with an increase in blood flow velocity of the middle cerebral artery and CPP. The relative hyperaemic phase on days 3 and 4 was followed by a decrease of all three parameters. Although TCD-CO2-reactivity was except for day 0 (1.4 +/- 1.5%), sufficient, ptiO2-CO2-reactivity sometimes showed so-called paradox reactions from day 0 till day 3, meaning an increase of ptiO2 on hyperventilation. Thereafter ptiO2-CO2-reactivity increased, increasing the risk of inducing ischaemia by hyperventilation. The authors concluded that ptiO2-monitoring might become an important tool in our treatment regime for patients requiring haemodynamic monitoring.[Abstract] [Full Text] [Related] [New Search]