These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide--a retrograde messenger for carbon monoxide signaling in ischemic heart.
    Author: Maulik N, Engelman DT, Watanabe M, Engelman RM, Das DK.
    Journal: Mol Cell Biochem; ; 157(1-2):75-86. PubMed ID: 8739231.
    Abstract:
    To examine the intracellular signaling mechanism of NO in ischemic myocardium, isolated working rat hearts were made ischemic for 30 min followed by 30 min of reperfusion. A separate group of hearts were pre-perfused with 3 mM L-arginine in the presence or absence of 650 microM of protoporphyrin, a heme oxygenase inhibitor for 10 min prior to ischemia. The release of NO was monitored using an on-line amperometric sensor placed into the right atrium. The aortic flow and developed pressure were examined to determine the effects of L-arginine on ischemic/reperfusion injury. Induction for the expression of heme oxygenase was studied by Northern hybridization. For signal transduction experiments, sarcolemmal membranes were radiolabeled by perfusing the isolated hearts with [3H] myoinositol and [14C] arachidonic acid. Biopsies were processed to determine the isotopic incorporation into various phosphoinositols as well as phosphatidic acid and diacylglycerol. cGMP was assayed by radioimmunoassay and SOD content was determined by enzymatic analysis. The release of NO was diminished following ischemia and reperfusion and was augmented by L-arginine. L-arginine reduced ischemic/reperfusion injury as evidenced by the enhanced myocardial functional recovery. Protoporphyrin modulated the effects of L-arginine. cGMP, which was remained unaffected by ischemia and reperfusion, was stimulated significantly after L-arginine treatment. The NO-mediated augmentation of cGMP was reduced by protoporphyrin suggesting that part of the effects may be mediated by CO generated through the heme oxygenase pathway. Reperfusion of ischemic myocardium resulted in significant accumulation of radiolabeled inositol phosphate, inositol bisphosphate, and inositol triphosphate. Isotopic incorporation of [3H] inositol into phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate was increased significantly during reperfusion. Reperfusion of the ischemic heart prelabeled with [14C] arachidonic acid resulted in modest increases in [14C] diacylglycerol and [14C] phosphatidic acid. Pretreatment of the heart with L-arginine significantly reversed this enhanced phosphodiesteratic breakdown during ischemia and early reperfusion. However, at the end of the reperfusion the inhibitory effect of L-arginine on the phosphodiesterases seems to be reduced. In L-arginine treated hearts, SOD activity was progressively decreased with the duration of reperfusion time. The results suggests for the first time that NO plays a significant role in transmembrane signaling in the ischemic myocardium. This signaling appears to be on- and off- nature, and linked with SOD content of the tissue. The signaling is transmitted via cGMP and opposes the effects of phosphodiesterases by inhibiting the ischemia/reperfusion-induced phosphodiesteratic breakdown. Our results also suggest that NO activates heme oxygenase which further stimulates the production of cGMP presumably by CO signaling. Thus, NO not only potentiates cGMP mediated intracellular signaling, it also functions as a retrograde messenger for CO signaling in heart.
    [Abstract] [Full Text] [Related] [New Search]