These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Desipramine treatment differently down-regulates beta-adrenoceptors of freshly isolated neurons and astrocytes. Author: Sapena R, Morin D, Zini R, Morin C, Tillement JP. Journal: Eur J Pharmacol; 1996 Apr 04; 300(1-2):159-62. PubMed ID: 8741184. Abstract: Eight days' desipramine administration (16 mg/kg per day i.p.) to rats resulted in a significant decrease in the density of beta-adrenoceptors in neuronal and astroglial cells from rat forebrain and cerebellum without modification of their corresponding affinity. beta-Adrenoceptor subtypes, beta 1 and beta 2, which coexist in neurons and astrocytes, are differently distributed in the brain and differently modified by desipramine administration which down-regulates beta 1-adrenoceptor in forebrain neurons and astrocytes and beta 2-adrenoceptor in cerebellum neurons. This down-regulation affects the predominant subtype, beta 1 or beta 2, of the relevant structure. Astroglial and neuronal beta-adrenoceptors are differently coupled to G-proteins. Only neuronal cells contain the high-affinity conformational state of the beta-adrenoceptors which is sensitive to GTP. The percentage of neuronal receptors in the high-affinity state differs according to brain area. Desipramine treatment decreases the neuronal density of both cerebellar high- and low-affinity sites and only the forebrain high-affinity site. The desipramine effects are thus subtype-dependent and differ between the two brain areas selected.[Abstract] [Full Text] [Related] [New Search]