These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation.
    Author: Murer H, Lötscher M, Kaissling B, Levi M, Kempson SA, Biber J.
    Journal: Kidney Int; 1996 Jun; 49(6):1769-73. PubMed ID: 8743494.
    Abstract:
    Inorganic phosphate (Pi) is reabsorbed in renal proximal tubules in a sodium (Na)-dependent manner involving brush border Na/Pi-cotransporter(s). Regulation of renal Pi-reabsorption, such as by parathyroid hormone (PTH) and/or by dietary Pi-deprivation, involves alterations in the rate of Na/Pi-cotransport. Two structurally different Na/Pi-cotransporters have been identified: type I-transporter and type II-transporter. The related mRNAs and proteins are located in the proximal tubule and in the brush border membrane. In heterologous expression systems type I and type II Na/Pi-cotransporters mediate Na/Pi-cotransport. Characterization of the transport properties suggested that the type II transporter is "responsible' for brush border membrane Na/Pi-cotransport (as observed in isolated vesicles). Administration of PTH to rats resulted in an inhibition of brush border membrane Na/Pi-cotransport (vesicles) and in a reduced brush border membrane content of the type II transporter. Feeding low Pi-diets resulted in an up-regulation of Na/Pi-cotransport (vesicles) and of type II transporter content; only after a prolonged exposure to low Pi-diets (more than 4 hr) was an increase in specific mRNA content observed. Refeeding high Pi diets had the opposite effects on Na/Pi-cotransport activity and on type II transporter protein. It is currently the task of future experiments to define the specific mechanisms leading to protein-synthesis-independent (PTH, acute Pi-deprivation, Pi-refeeding) and to protein-synthesis-dependent (prolonged Pi-deprivation) regulation of the type II Na/Pi-cotransporter.
    [Abstract] [Full Text] [Related] [New Search]