These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Osmotic pressure probe of actin-myosin hydration changes during ATP hydrolysis. Author: Highsmith S, Duignan K, Cooke R, Cohen J. Journal: Biophys J; 1996 Jun; 70(6):2830-7. PubMed ID: 8744320. Abstract: Osmotic stress in the 0.5-5 x 10(6) dyne/cm2 range was used to perturb the hydration of actin-myosin-ATP intermediates during steady-state hydrolysis. Polyethylene glycol (PEG) (1000 to 4000 Da), in the 1 to 10 wt% range, which does not cause protein precipitation, did not significantly affect the apparent KM or the Vmax for MgATP hydrolysis by myosin subfragment 1 (S1) alone, nor did it affect the value for the phosphate burst. Consistent with the kinetic data, osmotic stress did not affect nucleotide-induced changes in the fluorescence intensities of S1 tryptophans or of fluorescein attached to Cys-707. The accessibility of the fluorescent ATP analog, epsilon ADP, to acrylamide quenching was also unchanged. These data suggest that none of the steps in the ATP hydrolysis cycle involve substantial hydration changes, which might occur for the opening or closing of the ATP site or of other crevices in the S1 structure. In contrast, KM for the interaction of S1.MgADP.Pi with actin decreased tenfold in this range of osmotic pressure, suggesting that formation of actin.S1.MgADP.Pi involves net dehydration of the proteins. The dehydration volume increases as the size of the PEG is increased, as expected for a surface-excluded osmolyte. The measured dehydration volume for the formation of actin.S1.MgADP.Pi was used to estimate the surface area of the binding interface. This estimate was consistent with the area determined from the atomic structures of actin and myosin, indicating that osmotic stress is a reliable probe of actin.myosin.ATP interactions. The approach developed here should be useful for determining osmotic stress and excluded volume effects in situ, which are much larger than those of typical in vitro conditions.[Abstract] [Full Text] [Related] [New Search]