These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Voltage-sensitive Ca2+ channels in rat striatal synaptosomes: role on the [Ca2+]i responses to membrane depolarization.
    Author: Duarte CB, Cristóvão AJ, Carvalho AP, Carvalho CM.
    Journal: Neurochem Int; 1996 Jan; 28(1):67-75. PubMed ID: 8746766.
    Abstract:
    The fluorescent Ca2+ indicator Indo-1 was used to study the effect of depolarization evoked by KCl or 4-aminopyridine (4-AP) on the intracellular free calcium concentration responses (delta[Ca2+]i) in rat striatal synaptosomes. Depolarization of the synaptosomes with [KCl] > 7.5 mM induced a rapid increase of the [Ca2+]i followed by a decay towards a plateau. The size of the [Ca2+]i response varied sigmoidally with the synaptosomal membrane potential, with a transition potential of -27.3 mV. Depolarization with 4-AP evoked a dose-dependent sustained increase of the [Ca2+]i. Nitrendipine, omega-Conotoxin GVIA (omega-CgTx) and omega-Agatoxin IVA (omega-Aga IVA) were used to evaluate the relative role of L-, N-, P- and possibly Q-type voltage-sensitive Ca2+ channels (VSCCs) on the [Ca2+]i changes evoked by each of the two depolarizing agents. Nitrendipine caused only about 10% inhibition of the effect of either agent on the [Ca2+]i, suggesting that the L-type VSCCs have a modest contribution. The omega-CgTx decreased the response to KCl and 4-AP by 15 and 30%, respectively, but the latter effect may be partially due to a non-specific effect on Na+ channels. The omega-Aga IVA reduced the response to 4-AP by 26.5%, and this effect was additive to that of omega-CgTx, further suggesting that the striatal nerve terminals possess P- and/or Q-type, in addition to N-type Ca2+ channels. Neomycin (0.35 mM), tentatively used as an antagonist of the P-type channels, had a potent effect, decreasing the response to K(+)-depolarization and to 4-AP by, respectively, 32.5 and 48.5%. It is suggested that at the concentration used the antibiotic also partially blocks VSCCs which do not belong to the L-, N-, P- or Q-type VSCCs. We conclude that striatal nerve endings are equipped with at least four to five pharmacologically distinct classes of VSCCs, which are sensitive to well known antagonists of the L-, N-, P-, and Q-type VSCCs.
    [Abstract] [Full Text] [Related] [New Search]