These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Ca(2+)-induced leak current in Xenopus oocytes is indeed mediated through a Cl- channel. Author: Weber WM, Liebold KM, Reifarth FW, Clauss W. Journal: J Membr Biol; 1995 Dec; 148(3):263-75. PubMed ID: 8747558. Abstract: Defolliculated oocytes of Xenopus laevis responded to removal of external divalent cations with large depolarizations and, when voltage clamped, with huge currents. Single channel analysis revealed a Cl- channel with a slope conductance of about 90 pS at positive membrane potentials with at least four substates. Single channel amplitudes and mean channel currents had a reversal potential of approximately -15 mV as predicted by the Nernst equation for a channel perfectly selective for Cl-. Readdition of Ca2+ immediately inactivated the channel and restored the former membrane potential or clamp current. The inward currents were mediated by a Ca2+ inactivated Cl- channel (CaIC). The inhibitory potency of Ca2+ was a function of the external Ca2+ concentration with a half maximal blocker concentration of about 20 microM. These channels were inhibited by the Cl- channel blockers flufenamic acid, niflumic acid and diphenylamine-2-carboxylate (DPC). In contrast, 4,4'-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonicacid (SITS), another Cl- channel blocker, led to activation of this Cl- channel. Like other Cl- channels, the CaIC was activated by cytosolic cAMP. Extracellular ATP inhibited the channel while ADP was without any effect. Injection of phorbol 12-myristate 13-acetate (PMA), a protein kinase C activating phorbol ester, stimulated the Cl- current. Cytochalasin D, an actin filament disrupting compound, reversibly decreased the clamp current demonstrating an influence of the cytoskeleton. The results indicate that removal of divalent cations activates Cl- channels in Xenopus oocytes which share several features with Cl- channels of the CLC family. The former so-called leak current of oocytes under divalent cation-free conditions is nothing else than an activation of Cl- channels.[Abstract] [Full Text] [Related] [New Search]