These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional domains of bovine beta-1,4 galactosyltransferase. Author: Boeggeman EE, Balaji PV, Qasba PK. Journal: Glycoconj J; 1995 Dec; 12(6):865-78. PubMed ID: 8748165. Abstract: A number of N- and C-terminal deletion and point mutants of bovine beta-1,4 galactosyltransferase (beta-1,4GT) were expressed in E. coli to determine the binding regions of the enzyme that interact with N-acetylglucosamine (NAG) and UDP-galactose. The N-terminal truncated forms of the enzyme between residues 1-129, do not show any significant difference in the apparent Kms towards NAG or linear oligosaccharide acceptors e.g. for chitobiose and chitotriose, or for the nucleotide donor UDP-galactose. Deletion or mutation of Cys 134 results in the loss of enzymatic activity, but does not affect the binding properties of the protein either to NAG- or UDP-agarose. From these columns the protein can be eluted with 15 mM NAG and 50 mM EDTA, like the enzymatically active protein, TL-GT129, that contains residues 130-402 of bovine beta-1,4GT. Also the N-terminus fragment, TL-GT129NAG, that contains residues 130-257 of the beta-1,4GT, binds to, and elutes with 15 mM NAG and 50 mM EDTA from the NAG-agarose column as efficiently as the enzymatically active TL-GT129. Unlike TL-GT129, the TL-GT129NAG binds to UDP-columns less efficiently and can be eluted from the column with only 15 mM NAG. The C-terminus fragment GT-257UDP, containing residues 258-402 of beta-1,4GT, binds tightly to both NAG- and UDP-agarose columns. A small fraction, 5-10% of the bound protein, can be eluted from the UDP-agarose column with 50 mM EDTA alone. The results show that the binding behaviour of N- and C-terminal fragments of beta-1,4GT towards the NAG- and UDP-agarose columns differ, the former binds preferentially to NAG-columns, while the latter binds to UDP-agarose columns via Mn2+.[Abstract] [Full Text] [Related] [New Search]