These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional coupling between ryanodine receptors and L-type calcium channels in neurons.
    Author: Chavis P, Fagni L, Lansman JB, Bockaert J.
    Journal: Nature; 1996 Aug 22; 382(6593):719-22. PubMed ID: 8751443.
    Abstract:
    In skeletal muscle, L-type Ca2+ channels act as voltage sensors to control ryanodine-sensitive Ca2+ channels in the sarcoplasmic reticulum. It has recently been demonstrated that these ryanodine receptors generate a retrograde signal that modifies L-type Ca2+ -channel activity. Here we demonstrate a tight functional coupling between ryanodine receptors and L-type Ca2+ channel in neurons. In cerebellar granule cells, activation of the type-1 metabotropic glutamate receptor (mGluR1) induced a large, oscillating increase of the L-type Ba2+ current. Activation occurred independently of inositol 1,4,5-trisphosphate and classical protein kinases, but was mimicked by caffeine and blocked by ryanodine. The kinetics of this blockade were dependent on the frequency of Ba2+ current stimulation. Both mGluR1 and caffeine-induced increase in L-type Ca2+ -channel activity persisted in inside-out membrane patches. In these excised patches, ryanodine suppressed both the mGluR1- and caffeine-activated L-type Ca2+ channels. These results demonstrate a novel mechanism for Ca2+ -channel modulation in neurons.
    [Abstract] [Full Text] [Related] [New Search]