These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human N-acetylation of benzidine: role of NAT1 and NAT2.
    Author: Zenser TV, Lakshmi VM, Rustan TD, Doll MA, Deitz AC, Davis BB, Hein DW.
    Journal: Cancer Res; 1996 Sep 01; 56(17):3941-7. PubMed ID: 8752161.
    Abstract:
    These studies were designed to assess metabolism of benzidine and N-acetylbenzidine by N-acetyltransferase (NAT) NAT1 and NAT2. Metabolism was assessed using human recombinant NAT1 and NAT2 and human liver slices. For benzidine and N-acetylbenzidine, Km and Vmax values were higher for NAT1 than for NAT2. The clearance ratios (NAT1/NAT2) for benzidine and N-acetylbenzidine were 54 and 535, respectively, suggesting that N-acetylbenzidine is a preferred substrate for NAT1. The much higher NAT1 and NAT2 Km values for N-acetylbenzidine (1380 +/- 90 and 471 +/- 23 microM, respectively) compared to benzidine (254 +/- 38 and 33.3 +/- 1.5 microM, respectively) appear to favor benzidine metabolism over N-acetylbenzidine for low exposures. Determination of these kinetic parameters over a 20-fold range of acetyl-CoA concentrations demonstrated that NAT1 and NAT2 catalyzed N-acetylation of benzidine by a binary ping-pong mechanism. In vitro enzymatic data were correlated to intact liver tissue metabolism using human liver slices. Samples incubated with either [3H]benzidine or [3H]N-acetylbenzidine had a similar ratio of N-acetylated benzidines (N-acetylbenzidine + N',N'-diacetylbenzidine/ benzidine) and produced amounts of N-acetylbenzidine > benzidine > N,N'-diacetylbenzidine. With [3H]benzidine, p-aminobenzoic acid, a NAT1-specific substrate, increased the amount of benzidine and decreased the amount of N-acetylbenzidine produced, resulting in a decreased ratio of acetylated products. This is consistent with benzidine being a NAT1 substrate. N-Acetylation of benzidine or N-acetylbenzidine by human liver slices did not correlate with the NAT2 genotype. However, a higher average acetylation ratio was observed in human liver slices possessing the NAT1*10 compared to the NAT1*4 allele. Thus, a combination of human recombinant NAT and liver slice experiments has demonstrated that benzidine and N-acetylbenzidine are both preferred substrates for NAT1. These results also suggest that NAT1 may exhibit a polymorphic expression in human liver.
    [Abstract] [Full Text] [Related] [New Search]