These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Author: Bogerd HP, Fridell RA, Benson RE, Hua J, Cullen BR. Journal: Mol Cell Biol; 1996 Aug; 16(8):4207-14. PubMed ID: 8754820. Abstract: The Rex protein of human T-cell leukemia virus type 1, like the functionally equivalent Rev protein of human immunodeficiency virus type 1, contains a leucine-rich activation domain that specifically interacts with the human nucleoporin-like Rab/hRIP cofactor. Here, this Rex sequence is shown to function also as a protein nuclear export signal (NES). Rex sequence libraries containing randomized forms of the activation domain/NES were screened for retention of the ability to bind Rab/hRIP by using the yeast two-hybrid assay. While the selected sequences differed widely in primary sequence, all were functional as Rex activation domains. In contrast, randomized sequences that failed to bind Rab/hRIP lacked Rex activity. The selected sequences included one with homology to the Rev activation domain/NES and a second that was similar to the NES found in the cellular protein kinase inhibitor alpha. A highly variant, yet fully active, activation domain sequence selected on the basis of Rab/hRIP binding retained full NES function even though this sequence preserved only a single leucine residue. In contrast, nonfunctional activation domain mutants that were unable to bind Rab/hRIP had also lost NES function. These data demonstrate that NES activity is a defining characteristic of the activation domains found in the Rev/Rex class of retroviral regulatory proteins and strongly support the hypothesis that the Rab/hRIP cofactor plays a critical role in mediating the biological activity of these NESs. In addition, these data suggest a consensus sequence for NESs of the Rev/Rex class.[Abstract] [Full Text] [Related] [New Search]