These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sequence-independent inhibition of in vitro vascular smooth muscle cell proliferation, migration, and in vivo neointimal formation by phosphorothioate oligodeoxynucleotides. Author: Wang W, Chen HJ, Schwartz A, Cannon PJ, Stein CA, Rabbani LE. Journal: J Clin Invest; 1996 Jul 15; 98(2):443-50. PubMed ID: 8755655. Abstract: Phosphorothioate oligodeoxynucleotides (PS oligos) are antisense (sequence-specific) inhibitors of vascular smooth muscle cell (SMC) proliferation when targeted against different genes. Recently an aptameric G-quartet inhibitory effect of PS oligos has been demonstrated. To determine whether PS oligos manifest non-G-quartet, non-sequence-specific effects on human aortic SMC, we examined the effects of S-dC28, a 28-mer phosphorothioate cytidine homopolymer, on SMC proliferation induced by several SMC mitogens. S-dC28 significantly inhibited SMC proliferation induced by 10% FBS as well as the mitogens PDGF, bFGF, and EGF without cytotoxicity. Moreover, S-dC28 abrogated PDGF-induced in vitro migration in a modified micro-Boyden chamber. Furthermore, S-dC28 manifested in vivo antiproliferative effects in the rat carotid balloon injury model. S-dC28 suppressed neointimal cross-sectional area by 73% and the intima/media area ratio by 59%. Therefore, PS oligos exert potent non-G-quartet, non-sequence-specific effects on in vitro SMC proliferation and migration as well as in vivo neointimal formation.[Abstract] [Full Text] [Related] [New Search]