These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Raman spectroscopy of the Ff gene V protein and complexes with poly(dA): nonspecific DNA recognition and binding. Author: Benevides JM, Terwilliger TC, Vohník S, Thomas GJ. Journal: Biochemistry; 1996 Jul 23; 35(29):9603-9. PubMed ID: 8755742. Abstract: Raman spectra of crystals and solutions of the single-stranded DNA binding protein of bacteriophage Ff (gene V protein, gVp) and of solution complexes of gVp with single-stranded poly-(deoxyadenylic acid) [poly(dA)] reveal the following: (i) The gVp secondary and tertiary structures are similar in solution and in the crystal and are dominated by beta-sheet domains, in agreement with NMR and X-ray findings. (ii) Subunit conformation and side chain environments of gVp are virtually unchanged over a wide range of salt concentration (0 < [NaCl] < 100 mM); however, the solution conformation of poly(dA) exhibits sensitivity to added salt. The perturbed Raman markers indicate subtle changes in helix backbone geometry with accompanying small differences in base stacking as the concentration of NaCl is changed. (iii) In complexes with poly(dA), neither the conformation of gVp nor its side chain environments are altered significantly in comparison to the free protein. This is the case at both high salt (nucleotide-to-subunit binding stoichiometry n = 4) and low salt (n = 3). (iv) The Raman signature of poly(dA) undergoes small perturbations upon gVp binding, indicative of small changes in base stacking and phosphodiester backbone conformation. The present results show that the different stoichiometric binding modes of gVp to poly(dA) are accomplished without significant changes in gVp subunit structure and with only modest changes in the single-stranded poly(dA) ligand. This contrasts sharply with sequence-specific double-stranded DNA binding proteins, such as the phage lambda and D108 repressors, which undergo substantial structural changes upon DNA binding, and which also alter more dramatically the Raman fingerprints of their DNA target sites. Thus, nonspecific and specific nucleic acid recognition modes are distinguishable by Raman spectroscopy. The Raman signature of gVp also allows examination of hydrogen bonding interactions of unique side chains within the hydrophobic core (cysteine 33) and at the binding interface (tyrosine 41). These are discussed in relation to the recently published gVp crystal structure.[Abstract] [Full Text] [Related] [New Search]