These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrolytic and nonhydrolytic interactions in the ATP regulation of CFTR Cl- conductance. Author: Reddy MM, Quinton PM. Journal: Am J Physiol; 1996 Jul; 271(1 Pt 1):C35-42. PubMed ID: 8760028. Abstract: Previously, we showed in the native sweat duct that, in the presence of 0.1-0.5 mM ATP, nonhydrolyzable ATP analogue adenosine 5'-adenylylimidodiphosphate (AMP-PNP) can activate cystic fibrosis transmembrane conductance regulator Cl- conductance (CFTR GCl) (15). The objective of this study is to determine if 1) nonhydrolytic ATP binding alone can activate CFTR GCl after stable phosphorylation [in the presence of adenosine 5'-O-(3-thiotriphosphate) and phosphatase inhibition cocktail] of CFTR or 2) an ATP hydrolysis (in addition to phosphorylation) is required to support subsequent nonhydrolytic ATP regulation of CFTR GCl. We show that stably phosphorylated CFTR could only be activated by AMP-PNP in the presence of a small background ATP concentration. However, AMP-PNP can sustain previously activated CFTR GCl in the absence of ATP, even though Mg2+ is required for phosphorylation activation of CFTR GCl. However, once stably phosphorylated, ATP activation of CFTR GCl is independent of Mg2+. Our results show that both hydrolytic and nonhydrolytic interactions regulate CFTR GCl in vivo. Nonhydrolytic ATP interaction plays a significant role in both activation and deactivation of CFTR GCl.[Abstract] [Full Text] [Related] [New Search]