These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role for protein phosphatase in the regulation of Ca2+ influx in parotid gland acinar cells.
    Author: Sakai T, Ambudkar IS.
    Journal: Am J Physiol; 1996 Jul; 271(1 Pt 1):C284-94. PubMed ID: 8760057.
    Abstract:
    Stimulation of Ca2+ (and Mn2+) entry in salivary epithelial cells by carbachol, or thapsigargin, is mediated by an, as yet, unknown mechanism that is dependent on the depletion of Ca2+ from intracellular Ca2+ stores. This study assesses the possible role of protein phosphorylation in the regulation of Ca2+ entry in rat parotid gland acinar cells. Treatment of cells with the protein phosphatase inhibitors okadaic acid, calyculin A, and pervanadate induced a dose-dependent inhibition of carbachol and thapsigargin stimulation of Ca2+ and Mn2+ entry. All three inhibitors decreased carbachol stimulation of internal Ca2+ release, which likely accounts for the inhibition of carbachol-stimulated Ca2+ entry. Thapsigargin-induced internal Ca2+ release was not affected by the treatments. Additionally, all three phosphatase inhibitors decreased Mn2+ entry into cells with depleted internal Ca2+ store(s) (achieved by incubation with either carbachol or thapsigargin in Ca2+-free medium). Treatment of cells with phorbol 12-myristate 13-acetate, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, or staurosporine did not affect divalent cation entry into unstimulated cells or thapsigargin treated cells. Importantly, when cells with depleted internal Ca2+ store(s) were pretreated with staurosporine, or K-252a, the inhibition of Ca2+ entry by calyculin A and okadaic acid, but not by pervanadate, was attenuated. Although the effect of pervanadate remains to be clarified, these results demonstrate a role for protein phosphorylation in the regulation of divalent cation influx in rat parotid acinar cells.
    [Abstract] [Full Text] [Related] [New Search]