These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of the lactate transporter (MCT1) in skeletal muscles.
    Author: McCullagh KJ, Poole RC, Halestrap AP, O'Brien M, Bonen A.
    Journal: Am J Physiol; 1996 Jul; 271(1 Pt 1):E143-50. PubMed ID: 8760092.
    Abstract:
    We used an antibody, constructed against the monocarboxylate transporter 1 (MCT1) protein (L. Carpenter, R. C. Poole, and A. P. Halestrap. Biochim. Biophys. Acta 1279: 157-165, 1996), to study the expression and role of MCT1 in rat skeletal muscles. MCT1 was higher in red than in white muscles (P < 0.05) and was highly correlated with the oxidative fiber content (%slow-twitch oxidative + %fast-twitch oxidative glycolytic) of skeletal muscles (r = 0.91). MCT1 was highly related to lactate uptake in skeletal muscles (r = 0.90). Total lactate dehydrogenase (LDH) activity, an index of glycolysis, was negatively correlated with MCT1 in rat muscles (r = -0.80). MCT1 was also strongly correlated with the heart-type forms of LDH (LDH-1 vs. MCT1, r = 0.83; LDH-2 vs. MCT1, r = 0.89). There was no relationship between MCT1 and the muscle form of LDH (LDH-5; P > 0.05). MCT1 was highly correlated with citrate synthase activity, a marker of the oxidative capacity of muscle (r = 0.82). Therefore, MCT1 may have kinetics that favor the uptake of L-lactate into the muscle cell for oxidative metabolism, and MCT1 may be coordinately expressed with the heart forms of LDH and enzymes of oxidative metabolism.
    [Abstract] [Full Text] [Related] [New Search]