These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Baculovirus expression of two protein disulphide isomerase isoforms from Caenorhabditis elegans and characterization of prolyl 4-hydroxylases containing one of these polypeptides as their beta subunit.
    Author: Veijola J, Annunen P, Koivunen P, Page AP, Pihlajaniemi T, Kivirikko KI.
    Journal: Biochem J; 1996 Aug 01; 317 ( Pt 3)(Pt 3):721-9. PubMed ID: 8760355.
    Abstract:
    Protein disulphide isomerase (PDI; EC 5.3.4.1) is a multifunctional polypeptide that is identical to the beta subunit of prolyl 4-hydroxylases. We report here on the cloning and expression of the Caenorhabditis elegans PDI/beta polypeptide and its isoform. The overall amino acid sequence identity and similarity between the processed human and C. elegans PDI/beta polypeptides are 61% and 85% respectively, and those between the C. elegans PDI/beta polypeptide and the PDI isoform 46% and 73%. The isoform differs from the PDI/beta and ERp60 polypeptides in that its N-terminal thioredoxin-like domain has an unusual catalytic site sequence -CVHC-. Expression studies in insect cells demonstrated that the C. elegans PDI/beta polypeptide forms an active prolyl 4-hydroxylase alpha 2 beta 2 tetramer with the human alpha subunit and an alpha beta dimer with the C. elegans alpha subunit, whereas the C. elegans PDI isoform formed no prolyl 4-hydroxylase with either alpha subunit. Removal of the 32-residue C-terminal extension from the C. elegans alpha subunit totally eliminated alpha beta dimer formation. The C. elegans PDI/beta polypeptide formed less prolyl 4-hydroxylase with both the human and C. elegans alpha subunits than did the human PDI/beta polypeptide, being particularly ineffective with the C. elegans alpha subunit. Experiments with hybrid polypeptides in which the C-terminal regions had been exchanged between the human and C. elegans PDI/beta polypeptides indicated that differences in the C-terminal region are one reason, but not the only one, for the differences in prolyl 4-hydroxylase formation between the human and C. elegans PDI/beta polypeptides. The catalytic properties of the C. elegans prolyl 4-hydroxylase alpha beta dimer were very similar to those of the vertebrate type II prolyl 4-hydroxylase tetramer, including the K(m) for the hydroxylation of long polypeptide substrates.
    [Abstract] [Full Text] [Related] [New Search]