These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cannabinoid receptor stimulation of guanosine-5'-O-(3-[35S]thio)triphosphate binding in rat brain membranes.
    Author: Selley DE, Stark S, Sim LJ, Childers SR.
    Journal: Life Sci; 1996; 59(8):659-68. PubMed ID: 8761016.
    Abstract:
    Cannabinoid receptors belong to the class of G-protein-coupled receptors which inhibit adenylyl cyclase. Coupling of receptors to G-proteins can be assessed by the ability of agonists to stimulate guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTP gamma S) binding in the presence of excess GDP. The present study examined the effect of cannabinoid agonists on [35S]GTP gamma S binding in rat brain membranes. Assays were conducted with 0.05 nM [35S]GTP gamma S, incubated with rat cerebellar membranes, 1-30 microM GDP and the cannabinoid agonist WIN 55212-2. Results showed that the ability of WIN 55212-2 to stimulate [35S]GTP gamma S binding increased with increasing concentrations of GDP, with 10-30 microM GDP providing approximately 150-200% stimulation by the cannabinoid agonist. The pharmacology of cannabinoid agonist stimulation of [35S]GTP gamma S binding paralleled that of previously reported receptor binding and adenylyl cyclase assays, and agonist stimulation of [35S]GTP gamma S binding was blocked by the cannabinoid antagonist SR141716A. Brain regional studies revealed widespread stimulation of [35S]GTP gamma S binding by WIN 55212-2 in a number of brain areas, consistent with in vitro [35S]GTP gamma S autoradiography. These results demonstrate that [35S]GTP gamma S binding in the presence of excess GDP is an effective measure of cannabinoid receptor coupling to G-proteins in brain membranes.
    [Abstract] [Full Text] [Related] [New Search]